

MODBUS protocol Pag. 1 of 27 rev.4 -23.01.2017----

Modbus Protocol

for

SISGEO digitized

instruments

-SPECIFICATION-

MODBUS protocol Pag. 2 of 27 rev.4 -23.01.2017----

Introduction on SISGEO digitized instruments

The SISGEO digitized instruments use RS-485 serial communication and as such they can be chained together

and connected to a Master’s MODBUS device (datalogger, PC, etc.).

Normally each sensor is configured at the factory by SISGEO to have a unique RS-485 address. This

configuration allows a single datalogger to take readings from multiple sensors in a chain.

At the start of each scan, the power supply output of the datalogger should be turned on and then turned

off after reading from all the sensors in the chain.

Each sensor is set at the factory also for the power supply mode: always on or timed (called ‘SISGEO

Communications Window Feature’) used to conserve power.

Always On (standard setup)Always On (standard setup)Always On (standard setup)Always On (standard setup)

All the sensors in the chain are simultaneously powered and “awake” (maximum power consumption state):

each sensor is ready to respond to the commands of the Master’s MODBUS device (i.e. a datalogger).

Typical consumption (for EACH sensor): ~7mA @ 24Vdc, ~12mA @ 12Vdc

Timed Timed Timed Timed (only on request) (only on request) (only on request) (only on request) ---- called ‘SISGEO Communications Window Feature’ called ‘SISGEO Communications Window Feature’ called ‘SISGEO Communications Window Feature’ called ‘SISGEO Communications Window Feature’

The feature uses the Warming Delay and Address Delay parameters stored in the electronic non-volatile

memory to keep the sensor in a low power state while reading from other sensors in the chain.

The Master’s Modbus device (i.e. a datalogger or a PC) should wait the appropriate amount time before

attempting to read from a particular sensor in the chain. The Master’s Modbus device will turn on the power

supply output at the start of the scan; each sensor will stay in its lower power state according to the

Warming Delay and Address Delay times. Once a sensor is “awake” it will be in its maximum power

consumption state.

The sensors have a command to enter “Stop Mode” to return to a low power state. The Master’s Modbus

device should send the “Switch Off” command to put each sensor into “Stop Mode” just after reading its

values.

Once a sensor is in “Stop Mode” the only way to wake it up again is to remove its external power and restore

it.

Each sensor will be turned on after a time equal to its RS-485 address:

Address Delay = RS-485 address * delay

and will start measuring for a Warming Delay.

It will be possible for the Master’s Modbus device read the measurement after a timeframe given by:

Waiting time = Address Delay + Warming Delay

NOTE: The Warming Delay and Address Delay parameters must be the same for all the sensors in the chain

MODBUS protocol Pag. 3 of 27 rev.4 -23.01.2017----

Typical consumption (only for a consumption estimation, for more details please refers to the specific

technical data sheets):

Address Delay: ~ 1mA@24Vdc, ~ 2mA@12Vdc

Warming Delay: ~ 5mA@24Vdc, ~ 7mA@12Vdc

Ready: ~ 7mA@24Vdc, ~ 12mA@12Vdc

Stop mode: ~ 0.3mA@24Vdc, ~ 0.4mA@12Vdc

Power range : 9÷28Vdc with SMPS

Advised power supply: 24Vdc

Other info could be find in each instrument manual and datasheet; also FAQs can be useful.

MODBUS protocol Pag. 4 of 27 rev.4 -23.01.2017----

Modbus interface

The Modbus interface uses the following communication parameters (not modifiables):

Baud rate : 9600
Data bits : 8

Stop bits : 1

Parity : None

The instrument address (default 1) may be set in the configuration registers: the instrument will always

answer a message with a target address of 255.

Access to the instrument may be limited to a given time window (‘SISGEO Communication Window Feature’)

as programmed in the options configuration register (Holding Register 0x0102).

Input registers

These registers are read via the Modbus Read Input Register command (0x04).

Address Name Description

0x0100 COUNT Number of readings completed

0x0101 TYPE With the FW ver. 2.2 the reading of this register shows the value of the

holding register 0x13F (for the description please refers to the relative

section of this manual)

0x0110 RawXH Most significant part of raw AD reading for X instrument

0x0111 RawXL Least significant part of raw AD reading for X instrument

0x0112 RawYH Most significant part of raw AD reading for Y instrument

0x0113 RawYL Least significant part of raw AD reading for Y instrument

0x0114 RawTH Most significant part of raw AD reading for temperature

0x0115 RawTL Least significant part of raw AD reading for temperature

0x0120 SinXH Integer part of Amplitude * sin(α) reading for X inclinometer

0x0121 SinXL Fractional part of Amplitude * sin(α) reading for X inclinometer

0x0122 SinYH Integer part of Amplitude * sin(α) reading for Y inclinometer

0x0123 SinYL Fractional part of Amplitude * sin(α) reading for Y inclinometer

0x0124 TemperatureH Most significant part of temperature (ºC) reading for inclinometer

0x0125 TemperatureL Least significant part of temperature (ºC) reading for inclinometer

When the first part of a two register value is read, the high part is latched; for example, reading SinXH

latches SinXL.

MODBUS protocol Pag. 5 of 27 rev.4 -23.01.2017----

Raw values may be converted to long with the following code:

 unsigned high = RawXH;
 unsigned low = RawXL;
 long RawX = (long)((unsigned long)high << 16 | (unsigned long)low);

Integer/Fractional values may be converted to their float equivalent with the following code:

 unsigned high = SinXH;
 unsigned low = SinXL;
 long SinX = (long)((unsigned long)high << 16 | (unsigned long)low);
 float SinXF = SinX/65536.0;

Switch off register

This is a special register used to switch the unit off. This register is written with the Modbus Write Multiple

Registers command (0x10).

REGREGREGREG Raw defaultRaw defaultRaw defaultRaw default DefaultDefaultDefaultDefault DescriptionDescriptionDescriptionDescription

0x0010 Write:

• 0xFF to this register to switch the instrument off

• 0xEE to reset the instrument (the instrument

should be reset after changing the configuration).

Configuration registers

These registers are read via the Modbus Read Holding Register command (0x03).

These registers are written with the following sequence using the Modbus Write Multiple Registers

command (0x10):

1. Write the configuration size to register 0x0100.

2. Write 16 registers with 0x10 command starting at register 0x0101

3. Write 16 registers with 0x10 command starting at register 0x0111

4. Write 16 registers with 0x10 command starting at register 0x0121

5. Write 16 registers with 0x10 command starting at register 0x0131

6. Write 1 register with 0x10 command starting at register 0x0141

Registers hold data of different nature:

Short IntegerShort IntegerShort IntegerShort Integer

Short integers are 16 bit values (for example register 0x0106, Number of readings to average).

They are transmitted with the normal Modbus convention

MODBUS protocol Pag. 6 of 27 rev.4 -23.01.2017----

Long integersLong integersLong integersLong integers

Long integers are 32 bit values (for example registers 0x0107 and 0x0108 for the calibration date).

Each register, containing 16 bits word of data is transmitted with the normal Modbus convention, but the

least significant word uses the register with the lower address, so that the whole value is reconstructed,

using C-like notation, as: (REG[0x0108]<<16) | REG[0x107].

FloatsFloatsFloatsFloats

Floats are stored in a manner similar to long integers, but the resulting bitmap must be interpreted

according to IEEE 754.

Thus reading SArated:

 register 0x0109 = 0x9680

 register 0x010A = 0x4B18

The float value bitmap is 0x4B189680.

The resulting value is 10000000.0=1.0e7.

OptionsOptionsOptionsOptions

The Options register (address 0x0102) is used to configure the ‘SISGEO Communication Window Feature’.

When this register is set to 0 (the default value) this feature is disabled and the instrument is always on and

ready to serve Modbus commands.

When a different value is set, the most significant byte is the Address Delay parameter and the least

significant byte is the Warming Delay parameter.

With a value of a register value of 0x050A, we would have:

• Address Delay = 0x05 = 5

• Warming Delay = 0x0A = 10

The instrument will switch on after a time in seconds of:

����������	
�	�� � �

��

�	�� ∗ ��
��
�

��

and will start measuring the instrument for an Warming Delay time; the measure will be available for reading

on the Modbus after a total time of:

�	�� � �

��

�	�� ∗ ��
��
�

��

 � �������
�	��

So instruments with addresses 1, 2, 3 and 4 would enable their communication interface after a delay of 15,

20, 25 and 30 when using the sample values below

MODBUS protocol Pag. 7 of 27 rev.4 -23.01.2017----

The Modbus master should wait till the instrument come online, read the required values and switch them

off when they are no more needed. The only way to switch on again a unit, after it has been switched off, is

to cycle power off and on again.

During the delay time, instrument and AD are powered, so that this accounts as settling time for the

measure. It is expected that the Modbus master will send a switch off command after reading the

instrument so that power drain will switch to a minimum.

In the graph above power use is estimated assuming that at time 25 the Modbus master has sent a switch-

off command.

5 10 15 20 25 30 35 40

1

2

3

4

0

Incremental delay
Warming delay
Unit ready for communication

5 10 15 20 25 30 35 40

1

0

MODBUS protocol Pag. 8 of 27 rev.4 -23.01.2017----

Following the component switched ON and OFF during the 4 power state:

 Incremental Delay Warming Delay Communication Switch-off Mode

Sensors and ADCs OFF ON ON OFF

RS485 interface OFF OFF ON OFF

Microcontroller RUNNING RUNNING RUNNING STOP MODE

MODBUS protocol Pag. 9 of 27 rev.4 -23.01.2017----

Base configurationBase configurationBase configurationBase configuration

REGREGREGREG Raw defaultRaw defaultRaw defaultRaw default DefaultDefaultDefaultDefault DescriptionDescriptionDescriptionDescription

0x0101 0x5AA5 Validity signature

0x0102 0x0000 0 Options

0x0103 0x0001 1 Modbus Address

0x0104 0x0053 1 Serial number: S000001

The serial number S123456 would be stored in registers

as:

0x104: 1253 (ASCII code of S is 0x53)

0x105: 5634

0x0105 0x0100

0x0106 0x000A 30 Number of readings averaged to obtain an instrument

reading.

0x0107 0x0000 521547589 Calibration date in second since (format: 1/1/2000

00:00:00)
0x0108 0x0000

0x0109 0xF8C0 1.612E7 SArated

0x010A 0x4B75

0x010B 0xF8C0 1.612E7 SBrated

0x010C 0x4B75

0x010D 0x0000 0.0 EA

0x010E 0x0000

0x010F 0x0000 0.0 EB

0x0110 0x0000

0x0111 0x0000 0.0 MArated

0x0112 0x0000

0x0113 0x0000 0.0 MBrated

0x0114 0x0000

0x0115 0x0000 0.0 XA

0x0116 0x0000

0x0117 0x0000 0.0 XB

0x0118 0x0000

0x0119 0x0000 0.0 T0

0x011A 0x0000

0x011B 0x0000 0.0 T1

0x011C 0x0000

0x011D 0x0000 0.0 T2

0x011E 0x0000

MODBUS protocol Pag. 10 of 27 rev.4 -23.01.2017----

Further content for Further content for Further content for Further content for first generation sensorsfirst generation sensorsfirst generation sensorsfirst generation sensors

REGREGREGREG Raw defaultRaw defaultRaw defaultRaw default DefaultDefaultDefaultDefault DescriptionDescriptionDescriptionDescription

0x011F 0xE8D5 4.08e-4 SA0

0x0120 0x39D5

0x0121 0x8CA4 2.2e-5 SA1

0x0122 0x37B8

0x0123 0xA3B6 -1.1e-6 SA2

0x0124 0xB593

0x0125 0x0000 0.0 SA3

0x0126 0x0000

0x0127 0xE8D5 4.08e-4 SB0

0x0128 0x39D5

0x0129 0x8CA4 2.2e-5 SB1

0x012A 0x37B8

0x012B 0xA3B6 -1.1e-6 SB2

0x012C 0xB593

0x012D 0x0000 0.0 SB3

0x012E 0x0000

0x012F 0xCFAB -0.0522/4 MA0

0x0130 0xBC55

0x0131 0x9724 -0.0039/4 MA1

0x0132 0xBA7F

0x0133 0xB717 0.0001/4 MA2

0x0134 0x37D1

0x0135 0x07B0 -6.0e-7/4 MA3

0x0136 0xB421

0x0137 0xCFAB -0.0522/4 MB0

0x0138 0xBC55

0x0139 0x9724 -0.0039/4 MB1

0x013A 0xBA7F

0x013B 0xB717 0.0001/4 MB2

0x013C 0x37D1

0x013D 0x07B0 -6.0e-7/4 MB3

0x013E 0xB421

MODBUS protocol Pag. 11 of 27 rev.4 -23.01.2017----

Further content for second (actually last) generation sensorsFurther content for second (actually last) generation sensorsFurther content for second (actually last) generation sensorsFurther content for second (actually last) generation sensors

REGREGREGREG Raw defaultRaw defaultRaw defaultRaw default DefaultDefaultDefaultDefault DescriptionDescriptionDescriptionDescription

0x011F 0x877F -3.1e-4 SA0

0x0120 0xB9A2

0x0121 0x37BD +3.2e-5 SA1

0x0122 0x3806

0x0123 0x37BD -5.0e-7 SA2

0x0124 0xB506

0x0125 0xCC77 -5.0e-9 SA3

0x0126 0xB1AB

0x0127 0x877F -3.1e-4 SB0

0x0128 0xB9A2

0x0129 0x37BD 3.2e-5 SB1

0x012A 0x3806

0x012B 0x37BD -5.0e-7 SB2

0x012C 0xB506

0x012D 0xCC77 -5.0e-9 SB3

0x012E 0xB1AB

0x012F 0x0000 0.0 MA0

0x0130 0x0000

0x0131 0x0000 0.0 MA1

0x0132 0x0000

0x0133 0x0000 0.0 MA2

0x0134 0x0000

0x0135 0x0000 0.0 MA3

0x0136 0x0000

0x0137 0x0000 0.0 MB0

0x0138 0x0000

0x0139 0x0000 0.0 MB1

0x013A 0x0000

0x013B 0x0000 0.0 MB2

0x013C 0x0000

0x013D 0x0000 0.0 MB3

0x013E 0x0000

MODBUS protocol Pag. 12 of 27 rev.4 -23.01.2017----

This data (conversion parameter) are set to 0 by factory default.

REGREGREGREG Raw defaultRaw defaultRaw defaultRaw default DefaultDefaultDefaultDefault DescriptionDescriptionDescriptionDescription

0x013F 0x0002 2 FLAGS = Channel numbers (1 / 2)

0x0140 0x4000 20000 Amplitude used to multiply sin alfa value

(in case of inclinometers)
0x0141 0x469C

Calibration and measure

The following symbols will be used:

Raw input valuesRaw input valuesRaw input valuesRaw input values

TRAW Raw temperature measure

ARAW Raw X (AD counts)

BRAW Raw Y (AD counts)

Calibration parametersCalibration parametersCalibration parametersCalibration parameters

T0, T1, T2 Correction coefficients for A axis temperature reading

SA0, SA1,SA2,SA3 Correction coefficients for A axis sensitivity

SB0, SB1,SB2,SB3 Correction coefficients for B axis sensitivity

MA0,MA1,MA2,MA3 Correction coefficients for A axis mechanical offset

MB0,MB1,MB2,MB3 Correction coefficients for B axis mechanical offset

SArated, SBrated Rated sensitivity at 20°C for A and B channels

EA,EB Electrical offset for A and B channels

MArated, MBrated Rated mechanical offset at 20°C for A and B channels

XA,XB Cross-axis coefficients

Intermediate resultsIntermediate resultsIntermediate resultsIntermediate results

TA Temperature measure in °C

SA,SB Sensitivity at current temperature for A and B channels

MA,MB Mechanical offset at current temperature for A and B channels

Final resultsFinal resultsFinal resultsFinal results

readingA, readingB Readings in sinα for A and B axis

final readingA

final readingB

Final readings corrected for cross axis

MODBUS protocol Pag. 13 of 27 rev.4 -23.01.2017----

Temperature conversion

Temperature reading are corrected according to the following formulas:

� � �� � �� ∗ ���� � �� ∗ �����

Temperature compensation of parameters

The parameters used for linearization are compensated for temperature according to the following formulas.

The sensitivity correction factors are calculated as follows. First correction coefficients for sensitivity are

calculated:

���� � �!� � �!� ∗ �! � �!� ∗ �!� � �!" ∗ �!"

�#�� � �$� � �$� ∗ �$ � �$� ∗ �$� � �$" ∗ �$"

Then sensitivity is corrected as:

�� � �� %&'(∗)1 � ���� +

�# � �# %&'(∗)1 � �#�� +

The correction for mechanical offset is as follows:

���� � �!� ��!� ∗ � ��!� ∗ �� ��!" ∗ �"

�#�� � �$� ��$� ∗ � ��$� ∗ �� ��$" ∗ �"

The mechanical offset is corrected as:

�� � �� %&'(,����

�# � �# %&'(,�#��

Linearization and cross-axis

The readings are linearized as follows:

���
���� �
��)���
��)! %- ��⁄ , /�+ , ��+
���
���# �
��)���
��)$ %- �#⁄ , /#+ , �#+
0���	���
���� � ���
���� , 1���
���# ∗ 2�3
0���	���
���# � ���
���# ,)���
���� ∗ 2#+

MODBUS protocol Pag. 14 of 27 rev.4 -23.01.2017----

Appendix A – Programming Tips

Following you can find examples of main operation. The following examples are coded in C# and uses the

nModbus library.

Reading values

To read value from inclinometers the ReadInputRegister (0x04) Modbus function must be used. There are 3

measured value (SinX,SinY and T); for each of this value 2 InputRegister are used for a total of 6 input

registers.

Example 1 Example 1 Example 1 Example 1 –––– Reading valuesReading valuesReading valuesReading values

private byte Address485; // 485 address of sensor to read

private Int16 SinXH; // Higher part of sin X

private UInt16 SinXL; // Lower part of sin X

private Int16 SinYH; // Higher part of sin Y

private UInt16 SinYL; // Lower part of sin Y

private Int16 CalTH; // Higher part of temperature

private UInt16 CalTL; // Lower part of temperature

...

/// <summary>

/// Read 3 measured value and store raw value to SinXH,SinXL,SinYH,SinYL,CalTh and CalTL

/// </summary>

/// <param name="mbsm">

/// nModbus master

/// </param>

/// <returns>

/// True if read ok otherwise false

///</returns>

public bool Read(Modbus.Device.IModbusSerialMaster mbsm)

{

 try {

 ushort[] I = mbsm.ReadInputRegisters((byte)Configuration.address, 0x0120, 6);

 if (I.Length != 6) return false;

 SinXH = (Int16)I[0];

 SinXL = I[1];

 SinYH = (Int16)I[2];

 SinYL = I[3];

 CalTH = (Int16)I[4];

 CalTL = I[5];

 }

 catch (Exception) {

 return false;

 }

 return true;

}

...

/// <summary>

/// Decode lower and higher part of Sin X in to float vale

/// </summary>

public float SinX

{

 get {

 int v = SinXH;

 v <<= 16;

 v |= SinXL;

 return v / 65536.0f;

MODBUS protocol Pag. 15 of 27 rev.4 -23.01.2017----

 }

}

/// <summary>

/// Decode lower and higher part of Sin Y in to float vale

/// </summary>

public float SinY

{

 get {

 int v = SinYH;

 v <<= 16;

 v |= SinYL;

 return v / 65536.0f;

 }

}

/// <summary>

/// Decode lower and higher part of Temperature in Celsius to float vale

/// </summary>

public float Temperature

{

 get {

 int v = CalTH;

 v <<= 16;

 v |= CalTL;

 return v / 65536.0f;

 }

}

Note:Note:Note:Note:

Once the sensor is powered up it starts to read, depending on configuration the reading process can take

different time (usually with 15 averages the reading process takes 3 seconds). To ensure the read process is

completed you can read Input Register at address 0x100. The value returned is the count of completed read.

SISGEO suggests to wait 3 complete reading before consider the reading valid.

Input Register 0x101 contain the number of axis of the sensor (1 means only Sin X is present, 2 means both

Sin X and Sin Y are present). Temperature value is always present.

MODBUS protocol Pag. 16 of 27 rev.4 -23.01.2017----

Configuration

For normal operation reading the configuration is not needed. Configuration is stored in Holding registers

and must be read using Modbus function ReadHoldingRegister (0x03).

To read the configuration the following sequence must be done:

1) Read Single Holding Register (Modbus function 0x03) at address 0x0100. The read value is the size of

configuration in bytes.

2) Read Holding Registers (Modbus function 0x03) starting at address 0x0101 for the size read by previous

step divided by 2.

The read register must fill a byte array (two bytes for each registry) and decoded according to the Table

present in the specification document (Configuration registers).

Note:Note:Note:Note:

You can not read or write configuration partially. Reading configuration must read the correct size.

Example 2 Example 2 Example 2 Example 2 –––– Reading configurationReading configurationReading configurationReading configuration

public SensorConfiguration Configuration; // Configuration decoding class

...
/// <summary>
/// Read configuration
/// </summary>
/// <param name="mbsm">
/// nModbus master
/// </param>

/// <returns>
/// True if configuration read ok otherwise false
/// </returns>

public bool ReadConfiguration(Modbus.Device.IModbusSerialMaster mbsm)
{

 try {
 ushort[] S=mbsm.ReadHoldingRegisters((byte)Configuration.address, 0x0100, 1);
 if (S.Length != 1 || S[0] == 0) return false;
 ushort[] D = mbsm.ReadHoldingRegisters((byte)Configuration.address, 0x0101, (ushort)(S[0] / 2));
 if (D.Length != S[0] / 2) return false;
 Configuration = new SensorConfiguration(D);
 }

 catch (Exception) {
 return false;
 }

 return true;
}

Writing configuration is a 5 step procedure:

1) Read Single Holding Register (Modbus function 0x03) at address 0x0100. The read value is the size of

configuration in bytes.

2) Read Multiple Holding Registers (Modbus function 0x03) starting at address 0x0101 for the size read by

previous step divided by 2.

3) Change any required configuration parameter.

4) Write Single Holding Register (Modbus function 0x10) at address 0x100 with the size read in step 1.

5) Write Multiple Holding Registers (Modbus function 0x10) starting at address 0x101 with a maximum of 16

MODBUS protocol Pag. 17 of 27 rev.4 -23.01.2017----

registers up to finish the size to write.

Note:Note:Note:Note:

You can not write configuration partially. If 0x100 Holding register is not written with the correct size value

the following write to multiple register will fail.

Example 3 Example 3 Example 3 Example 3 –––– Writing configurationWriting configurationWriting configurationWriting configuration

public SensorConfiguration Configuration; // Configuration decoding class

...
/// <summary>
/// Decode lower and higher part of Sin X in to float vale
/// </summary>
/// <param name="Address">
/// 485 address of sensor
/// </param>

/// <param name="mbsm">
/// nModbus master
/// </param>

/// <returns>
/// True if configuration writed ok otherwise false
/// </returns>

public bool WriteConfiguration(byte Address, Modbus.Device.IModbusSerialMaster mbsm)
{

 try {
 ushort[] S = new ushort[1];
 S[0] = SensorConfiguration.CONFIGURATION_SIZE;
 mbsm.WriteMultipleRegisters(Address, 0x0100, S); // First write Holding register 0x0100 with size of configuration
 ushort[] UD = Configuration.UData;
 ushort[] FD = new ushort[16];
 for (int k = 0; k < 16; k++) FD[k] = UD[k];
 mbsm.WriteMultipleRegisters(Address, 0x0101, FD); // write first 16 registers starting at address 0x0101
 FD = new ushort[16];
 for (int k = 0; k < 16; k++) FD[k] = UD[16 + k];
 mbsm.WriteMultipleRegisters(Address, 0x0111, FD);

 FD = new ushort[16];
 for (int k = 0; k < 16; k++) FD[k] = UD[32 + k];
 mbsm.WriteMultipleRegisters(Address, 0x0121, FD);

 FD = new ushort[16];
 for (int k = 0; k < 16; k++) FD[k] = UD[48 + k];
 mbsm.WriteMultipleRegisters(Address, 0x0131, FD);

 FD = new ushort[1];
 for (int k = 0; k < 1; k++) FD[k] = UD[64 + k];
 mbsm.WriteMultipleRegisters(Address, 0x0141, FD); // write spare registers
 }

 catch (Exception) {
 return false;
 }

 return true;
}

Note:Note:Note:Note:

The Example 3 is built for configuration size of 65*2 bytes for different size the correct number of 16
th

unsigned int and remaining must be calculate and written.

MODBUS protocol Pag. 18 of 27 rev.4 -23.01.2017----

CHANGES VERSION FW 2.2

With the new firmware version it is possible:

F1) To configure the actual reading in: Sen α, degrees, millimeters for meter or inch for feet.

F2) Conversion of the readings counts (Channel A and Channel B) in electrical units (mV) using two straight

lines for each channel, one for the positive readings (0/+FS) and one for the negative ones (-FS/0). The result

of these conversions will be inserted in a third degree polynomial (a different polynomial for each channel).

F3) To add the holding register 0X0000 from which it is possible to obtain the firmware version.

F4) Individually read the holding register containing the configuration (from 0x101 onwards).

With the new version of the “ILM” software (available only for SISGEO internal use) it is possible:

S1) To configure the different reading modes.

S2) For the different modes of the polynomial conversion, the following numbers of decimal points are

established:

• With Amp = 1 : 6 deciAmp = 1 : 6 deciAmp = 1 : 6 deciAmp = 1 : 6 decimals mals mals mals (ex. 0.123456) will be displayed

• With Amp = 12 : 5 decimals Amp = 12 : 5 decimals Amp = 12 : 5 decimals Amp = 12 : 5 decimals (ex. 0.12345) will be displayed

• With Amp = 90Amp = 90Amp = 90Amp = 90 : 4 decimals4 decimals4 decimals4 decimals (ex. 12.1234) will be displayed

• With Amp = 1000 :Amp = 1000 :Amp = 1000 :Amp = 1000 : 3 decimals 3 decimals 3 decimals 3 decimals (ex. 123.123) will be displayed

• With Amp = 20000 :Amp = 20000 :Amp = 20000 :Amp = 20000 : 2 decimals 2 decimals 2 decimals 2 decimals (ex. 1234.12) will be displayed

S3) In polynomial mode a byte of configuration is used to show a unit of measure and choose the relative

number of decimals. It is used the following chart unit/decimal:

UA/UB ValueUA/UB ValueUA/UB ValueUA/UB Value Unit of MeasurementUnit of MeasurementUnit of MeasurementUnit of Measurement DECIMALSDECIMALSDECIMALSDECIMALS

1 mV 2

2 bar 5

3 mbar 3

4 atm 5

5 psi 4

6 Pa 0

7 kPa 3

8 MPa 6

9 mmH2O 1

10 mH2O 4

11 inH2O 3

MODBUS protocol Pag. 19 of 27 rev.4 -23.01.2017----

12 ftH2O 4

13 mmHg 3

14 cmHg 4

15 inHg 4

16 Kg/cm
2
 5

17 Kg/m
2
 1

18 lb/in
2
 4

19 lb/ft
2
 2

20 N/cm
2
 4

21 N/m
2
 0

22 t/m
2
 4

23 t(UK)/ft
2
 5

24 t(USA)/ft
2
 5

Firmware changesFirmware changesFirmware changesFirmware changes

The procedure of Modbus reading (Input Register) is not subjected to changes, while the configuration will

be modified as follows.

It has been added an holding register 0x0000 which returns the firmware version: the MSB it the Major

Version and the LSB is the Minor Version. The value configured for this version is 2.1.

The current register 0x013F, named FLAGS (Holding Register) now has the following form:

00000000 0000MMCC

where:

CC

01 = 1 channel

10 = 2 channels

MM

00 = A * Sen α

01 = Degrees

10 = Millimeters on Meter (A=1000) / Inch on Feet (A=12)

11 = mV + Polynomial

MODBUS protocol Pag. 20 of 27 rev.4 -23.01.2017----

In case MM = 11 (mV +Polynomial) the following registers (configuration registers) have the following

meaning:

REGREGREGREG Raw defaultRaw defaultRaw defaultRaw default DefaultDefaultDefaultDefault DescriptionDescriptionDescriptionDescription

0x0109 0x0000 0.0 APQ = constant term of straight line positive side channel A

0x010A 0x0000

0x010B 0x0000 1.0 APM = slope of straight line positive side channel A

0x010C 0x3F80

0x010D 0x0000 0.0 AZ = counts over which it is used the straight line positive side

and under which it is used the straight line negative side for

channel A 0x010E 0x0000

0x010F 0x0000 0.0 ANQ = constant term of straight line negative side channel A

0x0110 0x0000

0x0111 0x0000 1.0 ANM = slope of straight line negative side channel A

0x0112 0x3F80

0x0113 0x0000 0.0 BPQ = constant term of straight line positive side channel B

0x0114 0x0000

0x0115 0x0000 1.0 BPM = slope of straight line positive side channe B

0x0116 0x3F80

0x0117 0x0000 0.0 BZ = counts over which it is used the straight line positive side

and under which it is used the straight line negative side for

channel B 0x0118 0x0000

0x0119 0x8000 -273.0 T0 = constant term of temperature calculation correction

0x011A 0xC388

0x011B 0x36dd 2.128738E-4 T1 = 1
st
 degree coefficient for the correction of the

temperature calculation
0x011C 0x395F

0x011D 0x0000 0.0 T2 = 2
nd

 degree coefficient for the correction of the

temperature calculation
0x011E 0x0000

0x011F 0x0000 0.0 BNQ = constant term of straight line negative side channel B

0x0120 0x0000

MODBUS protocol Pag. 21 of 27 rev.4 -23.01.2017----

0x0121 0x0000 1.0 BNM = slope of straight line negative side channel B

0x0122 0x3F80

0x0123 0x0000 0.0 AX0 = constant term of polynomial correction channel A

0x0124 0x0000

0x0125 0x0000 1.0 AX1 =1
st
 degree coefficient for the polynomial correction

channel A
0x0126 0x3F80

0x0127 0x0000 0.0 AX2 = 2
nd

 degree coefficient for the polynomial correction

channel A
0x0128 0x0000

0x0129 0x0000 0.0 AX3 = 3
rd

 degree coefficient for the polynomial correction

channel A
0x012A 0x0000

0x012B 0x0000 0.0 BX0 = constant term of polynomial correction channel A B

x012C 0x0000

0x012D 0x0000 1.0 BX1 = 1
st
 degree coefficient for the polynomial correction

channel B
0x012E 0x3F80

0x012F 0x0000 0.0 BX2 = 2
nd

 degree coefficient for the polynomial correction

channel B
0x0130 0x0000

0x0131 0x0000 0.0 BX3 = 3
rd

 degree coefficient for the polynomial correction

channel B
0x0132 0x0000

0x0133 0x0000 0.0 AH = coefficient of temperature correction millivolt (mV)

reading channel A

 0x0134 0x0000

0x0135 0x0000 1.0 AK = coefficient of temperature correction millivolt (mV)

reading channel A

 0x0136 0x3F80

0x0137 0x0000 0.0 BH = coefficient of temperature correction millivolt (mV)

reading channel B
0x0138 0x0000

0x0139 0x0000 1.0 BK = coefficient of temperature correction millivolt (mV)

reading channel B
0x013A 0x3F80

0x013B 0x0000 0 UA/UB = Unit of measure see table (S3)

(LSB = UA, MSB = UB)

MODBUS protocol Pag. 22 of 27 rev.4 -23.01.2017----

0x013C 0x0000

0x013D 0x0000 0.0 Not used

0x013E 0x0000

The calculation is performed with the following procedure.

With AR and BR being respectively the readings in counts of the AD for channel A and channel B.

CHANGES VERSION FW 2.3

With the new firmware version has been reduced the time to switch off the sensor to 100 ms

CONVERSION FROM COUNTS TO ELECTRICAL UNIT (mV)

CHANNEL ACHANNEL ACHANNEL ACHANNEL A

for AR >= AZ

AmV = AR * APM + APQ

for AR < AZ

AmV = AR * ANM + ANQ

CHANNEL BCHANNEL BCHANNEL BCHANNEL B

for BR >= BZ

BmV = BR * BPM + BPQ

for BR < AZ

BmV = BR * BNM + BNQ

TEMPERATURE CONVERSION

Being Traw the counts relative to the temperature, read from the A/D

 � � �� � �� ∗ ���� � �� ∗ �����

MODBUS protocol Pag. 23 of 27 rev.4 -23.01.2017----

TEMPERATURE CORRECTION READING mV

AmV and BmV represent the readings in mV of both channels A and B.

AmVC = (AH * T + AK) * AmV

BmVC = (BH * T + BK) * BmV

where T is the temperature measured in Celsius (°C) degrees.

NOTE. If you set up AH and BH at 0 and AK and BK at 1, no temperature correction is performed.

CONVERSION FROM ELECTRICAL UNIT (mV) TO PHYSICS UNIT

AmVC and BmVC represent the readings in mV of channels A and B, corrected in temperature.

0���	���
���� � !�45" ∗ !23 � !�45� ∗ !22 � !�45 ∗ !21 � !20

0���	���
���# � $�45" ∗ $23 � $�45� ∗ $22 � $�45 ∗ $21 � $20

The calibration procedure is divided into two phases. The first phase calculate the correction in mV. Then, it

will be possible both to insert the calibration parameters of the sensor and to perform its specific calibration.

It has been added Input Register for the numeric representation according to standard IEEE 754

The previous method of conversion with codification:

 unsigned high = SinXH;unsigned high = SinXH;unsigned high = SinXH;unsigned high = SinXH;

 unsigned low = SinXL;unsigned low = SinXL;unsigned low = SinXL;unsigned low = SinXL;

 long SinX = (long)((unsigned long)high <<long SinX = (long)((unsigned long)high <<long SinX = (long)((unsigned long)high <<long SinX = (long)((unsigned long)high << 16 | (unsigned long)low);16 | (unsigned long)low);16 | (unsigned long)low);16 | (unsigned long)low);

 float SinXF = SinX/65536.0;float SinXF = SinX/65536.0;float SinXF = SinX/65536.0;float SinXF = SinX/65536.0;

limited the decimal precision to 1/65535. Existing a polynomial conversion that could convert the value in

any numeric representation (ex: the conversion in bar and sen alfa configuration with amp 1 requires 5

decimals), it has been introduced the conversion according to standard IEEE 754.

Here follows an example C# of the conversion:

private float Convert(Int16 SinXH, UInt16 SinXL) {

 if ((Configuration.Flags &

SensorConfiguration.CFG_SENSOR_FLAG_MEASURE_MODE_FLOAT) ==

 SensorConfiguration.CFG_SENSOR_FLAG_MEASURE_MODE_FLOAT) {

MODBUS protocol Pag. 24 of 27 rev.4 -23.01.2017----

 byte[] bh = BitConverter.GetBytes(SinXH);

 byte[] bl = BitConverter.GetBytes(SinXL);

 byte[] bf = new byte[4];

 bf[0] = bl[0];

 bf[1] = bl[1];

 bf[2] = bh[0];

 bf[3] = bh[1];

 return BitConverter.ToSingle(bf, 0);

 }

 else {

 int v = h;

 v <<= 16;

 v |= l;

 return v / 65536.0f;

 }

 }

If it is not required a decimal precision superior to 1/65535, you could use the previous codification.

To maintain the compatibility with the previous versions of the firmware, the following registers have been

added:

REGREGREGREG ContentContentContentContent DescriptionDescriptionDescriptionDescription

0x0126 Converted value X

Float IEEE MSB

Value converted axis X according the codification Float IEEE

754

0x0127 Converted value X

Float IEEE LSB

0x0128 Converted value Y

Float IEEE MSB

Value converted axis Y according the codification Float IEEE 754

0x0129 Converted value Y

Float IEEE LSB

0x012A Converted value

Temperature Float

IEEE MSB

Value converted temperature according the codification Float

IEEE 754

0x012B Converted value

Temperature Float

IEEE LSB

In these registers the reading in format IEEE 754 are saved.

MODBUS protocol Pag. 25 of 27 rev.4 -23.01.2017----

Out of range and reading errors A/D

The controls for out of range and for reading errors of A/D have been introduced. Here follow the values

returned from the input registers (see previous charts for the description of the single registers) according to

the out of limits found:

Out of scaleOut of scaleOut of scaleOut of scale
Register Register Register Register

(Hex)(Hex)(Hex)(Hex)

ValueValueValueValue

(uint16 Hex)(uint16 Hex)(uint16 Hex)(uint16 Hex)
ValueValueValueValue

AD FAILURE

0x0110 7FFF

+2147483647

0x0111 FFFF

OVERFLOW

0x0110 7FFF

+2147483647

0x0111 FFFF

UNDERFLOW
0x0110 8000

-2147483648
0x0111 0000

AD FAILURE

0x0112 7FFF

+2147483647
0x0113 FFFF

OVERFLOW

0x0112 7FFF

+2147483647
0x0113 FFFF

UNDERFLOW

0x0112 8000

-2147483648
0x0113 0000

AD FAILURE

0x0114 7FFF

+2147483647
0x0115 FFFF

OVERFLOW

0x0114 7FFF

+2147483647
0x0115 FFFF

UNDERFLOW

0x0114 8000

-2147483648
0x0115 0000

AD FAILURE

0x0120 7FFF

+2147483647
0x0121 FFFF

OVERFLOW

0x0120 7FFF

+2147483647
0x0121 FFFF

MODBUS protocol Pag. 26 of 27 rev.4 -23.01.2017----

Out of scaleOut of scaleOut of scaleOut of scale
Register Register Register Register

(Hex)(Hex)(Hex)(Hex)

ValueValueValueValue

(uint16 Hex)(uint16 Hex)(uint16 Hex)(uint16 Hex)
ValueValueValueValue

UNDERFLOW

0x0120 8000

-2147483648
0x0121 0000

AD FAILURE

0x0122 7FFF

+2147483647
0x0123 FFFF

OVERFLOW

0x0122 7FFF

+2147483647
0x0123 FFFF

UNDERFLOW

0x0122 8000

-2147483648
0x0123 0000

AD FAILURE

0x0124 7FFF

+2147483647

0x0125 FFFF

OVERFLOW

0x0124 7FFF

+2147483647

0x0125 FFFF

UNDERFLOW

0x0124 8000

-2147483648

0x0125 0000

AD FAILURE

0x0126 7FFF

NaN

0x0127 FFFF

OVERFLOW

0x0126 7F80

+Infinity

0x0127 0000

UNDERFLOW

0x0126 FF80

-Infinity

0x0127 0000

AD FAILURE

0x0128 7FFF

NaN

0x0129 FFFF

OVERFLOW

0x0128 7F80

+Infinity

0x0129 0000

UNDERFLOW

0x0128 FF80

-Infinity

0x0129 0000

MODBUS protocol Pag. 27 of 27 rev.4 -23.01.2017----

Out of scaleOut of scaleOut of scaleOut of scale
Register Register Register Register

(Hex)(Hex)(Hex)(Hex)

ValueValueValueValue

(uint16 Hex)(uint16 Hex)(uint16 Hex)(uint16 Hex)
ValueValueValueValue

AD FAILURE

0x012A 7FFF

NaN

0x012B FFFF

OVERFLOW

0x012A 7F80

+Infinity

0x012B 0000

UNDERFLOW

0x012A FF80

-Infinity

0x012B 0000

